Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Cytokine ; 178: 156592, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574505

RESUMO

The severity of COVID-19 has been reported to differ among SARS-CoV-2 mutant variants. The overactivation of macrophages is involved in severe COVID-19, yet the effects of SARS-CoV-2 mutations on macrophages remain poorly understood. To clarify the effects, we examined whether mutations of spike proteins (S-proteins) affect macrophage activation. CD14+ monocyte-derived macrophages were stimulated with the recombinant S-protein of the wild-type, Delta, and Omicron strains or live viral particles of individual strains. Regarding IL-6 and TNF-α, Delta or Omicron S-protein had stronger or weaker pro­inflammatory ability, respectively, than the wild-type. Similar trends were observed between S-proteins and viral particles. S-protein mutations could be related to the diversity in macrophage activation and severity rates in COVID-19 caused by various SARS-CoV-2 strains.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Proteínas Mutadas de Ataxia Telangiectasia
2.
J Virol ; 98(3): e0199523, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38323813

RESUMO

Historically, antibody reactivity to pathogens and vaccine antigens has been evaluated using serological measurements of antigen-specific antibodies. However, it is difficult to evaluate all antibodies that contribute to various functions in a single assay, such as the measurement of the neutralizing antibody titer. Bulk antibody repertoire analysis using next-generation sequencing is a comprehensive method for analyzing the overall antibody response; however, it is unreliable for estimating antigen-specific antibodies due to individual variation. To address this issue, we propose a method to subtract the background signal from the repertoire of data of interest. In this study, we analyzed changes in antibody diversity and inferred the heavy-chain complementarity-determining region 3 (CDRH3) sequences of antibody clones that were selected upon influenza virus infection in a mouse model using bulk repertoire analysis. A decrease in the diversity of the antibody repertoire was observed upon viral infection, along with an increase in neutralizing antibody titers. Using kernel density estimation of sequences in a high-dimensional sequence space with background signal subtraction, we identified several clusters of CDRH3 sequences induced upon influenza virus infection. Most of these repertoires were detected more frequently in infected mice than in uninfected control mice, suggesting that infection-specific antibody sequences can be extracted using this method. Such an accurate extraction of antigen- or infection-specific repertoire information will be a useful tool for vaccine evaluation in the future. IMPORTANCE: As specific interactions between antigens and cell-surface antibodies trigger the proliferation of B-cell clones, the frequency of each antibody sequence in the samples reflects the size of each clonal population. Nevertheless, it is extremely difficult to extract antigen-specific antibody sequences from the comprehensive bulk antibody sequences obtained from blood samples due to repertoire bias influenced by exposure to dietary antigens and other infectious agents. This issue can be addressed by subtracting the background noise from the post-immunization or post-infection repertoire data. In the present study, we propose a method to quantify repertoire data from comprehensive repertoire data. This method allowed subtraction of the background repertoire, resulting in more accurate extraction of expanded antibody repertoires upon influenza virus infection. This accurate extraction of antigen- or infection-specific repertoire information is a useful tool for vaccine evaluation.


Assuntos
Anticorpos Antivirais , Infecções por Orthomyxoviridae , Orthomyxoviridae , Animais , Camundongos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Células Clonais/citologia , Células Clonais/imunologia , Regiões Determinantes de Complementaridade/imunologia , Vacinas contra Influenza/imunologia , Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/sangue , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia
3.
NEJM Evid ; 3(3): EVIDoa2300290, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38411447

RESUMO

Mpox Neutralizing Antibody Response to LC16m8 VaccineIn this study of 50 healthy volunteers in Japan, a smallpox vaccine (LC16m8) exhibited a robust neutralizing antibody response against two strains of the mpox virus. With a 94% "take" rate by day 14, seroconversion rates on day 28 were 72 and 70% against the Zr599 and Liberia strains, respectively, decreasing to 30% for both on day 168; no serious adverse events occurred.


Assuntos
Varíola dos Macacos , Vacina Antivariólica , Vacinas , Adulto , Humanos , Anticorpos Neutralizantes , Antígenos Virais
5.
Proc Natl Acad Sci U S A ; 120(52): e2314808120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38134196

RESUMO

Infectious virus shedding from individuals infected with severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is used to estimate human-to-human transmission risk. Control of SARS-CoV-2 transmission requires identifying the immune correlates that protect infectious virus shedding. Mucosal immunity prevents infection by SARS-CoV-2, which replicates in the respiratory epithelium and spreads rapidly to other hosts. However, whether mucosal immunity prevents the shedding of the infectious virus in SARS-CoV-2-infected individuals is unknown. We examined the relationship between viral RNA shedding dynamics, duration of infectious virus shedding, and mucosal antibody responses during SARS-CoV-2 infection. Anti-spike secretory IgA antibodies (S-IgA) reduced viral RNA load and infectivity more than anti-spike IgG/IgA antibodies in infected nasopharyngeal samples. Compared with the IgG/IgA response, the anti-spike S-IgA post-infection responses affected the viral RNA shedding dynamics and predicted the duration of infectious virus shedding regardless of the immune history. These findings highlight the importance of anti-spike S-IgA responses in individuals infected with SARS-CoV-2 for preventing infectious virus shedding and SARS-CoV-2 transmission. Developing medical countermeasures to shorten S-IgA response time may help control human-to-human transmission of SARS-CoV-2 infection and prevent future respiratory virus pandemics.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Eliminação de Partículas Virais , Formação de Anticorpos , Tempo de Reação , Anticorpos Antivirais , RNA Viral , Imunoglobulina G , Imunoglobulina A , Imunoglobulina A Secretora
6.
iScience ; 26(5): 106694, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37124417

RESUMO

Evaluating the serum cross-neutralization responses after breakthrough infection with various SARS-CoV-2 variants provides valuable insight for developing variant-proof COVID-19 booster vaccines. However, fairly comparing the impact of breakthrough infections with distinct epidemic timing on cross-neutralization responses, influenced by the exposure interval between vaccination and infection, is challenging. To compare the impact of pre-Omicron to Omicron breakthrough infection, we estimated the effects on cross-neutralizing responses by the exposure interval using Bayesian hierarchical modeling. The saturation time required to generate saturated cross-neutralization responses differed by variant, with variants more antigenically distant from the ancestral strain requiring longer intervals of 2-4 months. The breadths of saturated cross-neutralization responses to Omicron lineages were comparable in pre-Omicron and Omicron breakthrough infections. Our results highlight the importance of vaccine dosage intervals of 4 months or longer, regardless of the antigenicity of the exposed antigen, to maximize the breadth of serum cross-neutralization covering SARS-CoV-2 Omicron lineages.

7.
Proc Natl Acad Sci U S A ; 120(22): e2300155120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216518

RESUMO

Obesity has been recognized as one of the most significant risk factors for the deterioration and mortality associated with COVID-19, but the significance of obesity itself differs among ethnicity. Multifactored analysis of our single institute-based retrospective cohort revealed that high visceral adipose tissue (VAT) burden, but not other obesity-associated markers, was related to accelerated inflammatory responses and the mortality of Japanese COVID-19 patients. To elucidate the mechanisms how VAT-dominant obesity induces severe inflammation after severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection, we infected two different strains of obese mice, C57BL/6JHamSlc-ob/ob (ob/ob), C57BLKS/J-db/db (db/db), genetically impaired in the leptin ligand and receptor, respectively, and control C57BL/6 mice with mouse-adapted SARS-CoV-2. Here, we revealed that VAT-dominant ob/ob mice were extremely more vulnerable to SARS-CoV-2 due to excessive inflammatory responses when compared to SAT-dominant db/db mice. In fact, SARS-CoV-2 genome and proteins were more abundant in the lungs of ob/ob mice, engulfed in macrophages, resulting in increased cytokine production including interleukin (IL)-6. Both an anti-IL-6 receptor antibody treatment and the prevention of obesity by leptin replenishment improved the survival of SARS-CoV-2-infected ob/ob mice by reducing the viral protein burden and excessive immune responses. Our results have proposed unique insights and clues on how obesity increases the risk of cytokine storm and death in patients with COVID-19. Moreover, earlier administration of antiinflammatory therapeutics including anti-IL-6R antibody to VAT-dominant patients might improve clinical outcome and stratification of the treatment for COVID-19, at least in Japanese patients.


Assuntos
COVID-19 , Malus , Camundongos , Animais , Leptina/genética , Citocinas , COVID-19/complicações , Estudos Retrospectivos , SARS-CoV-2 , Camundongos Endogâmicos C57BL , Obesidade/complicações , Obesidade/genética , Interleucina-6 , Camundongos Obesos
8.
Glob Health Med ; 5(1): 5-14, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36865900

RESUMO

As coronavirus disease 2019 (COVID-19) outbreaks in healthcare facilities are a serious public health concern, we performed a case-control study to investigate the risk of COVID-19 infection in healthcare workers. We collected data on participants' sociodemographic characteristics, contact behaviors, installation status of personal protective equipment, and polymerase chain reaction testing results. We also collected whole blood and assessed seropositivity using the electrochemiluminescence immunoassay and microneutralization assay. In total, 161 (8.5%) of 1,899 participants were seropositive between August 3 and November 13, 2020. Physical contact (adjusted odds ratio 2.4, 95% confidence interval 1.1-5.6) and aerosol-generating procedures (1.9, 1.1-3.2) were associated with seropositivity. Using goggles (0.2, 0.1-0.5) and N95 masks (0.3, 0.1-0.8) had a preventive effect. Seroprevalence was higher in the outbreak ward (18.6%) than in the COVID-19 dedicated ward (1.4%). Results showed certain specific risk behaviors of COVID-19; proper infection prevention practices reduced these risks.

9.
iScience ; 26(2): 105969, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687316

RESUMO

The immune responses to SARS-CoV-2 variants in COVID-19 cases are influenced by various factors including pre-existing immunity via vaccination and prior infection. Elucidating the drivers for upgrading neutralizing activity to SARS-CoV-2 in COVID-19 cases with pre-existing immunity will aid in improving COVID-19 booster vaccines with enhanced cross-protection against antigenically distinct variants, including the Omicron sub-lineage BA.4/5. This study revealed that the magnitude and breadth of neutralization activity to SARS-CoV-2 variants after breakthrough infections are determined primarily by upper respiratory viral load and vaccination-infection time interval. Extensive neutralizing breadth, covering even the most antigenically distant BA.4/5, was observed in cases with higher viral load and longer time intervals. Antigenic cartography depicted a critical role of the time interval in expanding the breadth of neutralization to SARS-CoV-2 variants. Our results illustrate the importance of dosing interval optimization as well as antigen design in developing variant-proof booster vaccines.

10.
Vaccine ; 41(11): 1834-1847, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36572603

RESUMO

BACKGROUND: In early 2020, developing vaccines was an urgent need for preventing COVID-19 from a contingency perspective. METHODS: S-268019-a is a recombinant protein-based vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), comprising a modified recombinant spike protein antigen adjuvanted with agatolimod sodium, a Toll-like receptor-9 agonist. In the preclinical phase, it was administered intramuscularly twice at a 2-week interval in 7-week-old mice. Immunogenicity was assessed, and the mice were challenged intranasally with mouse-adapted SARS-CoV-2 at 2 and 8 weeks, respectively, after the second immunization. After confirming the preclinical effect, a Phase 1/2, randomized, parallel-group clinical study was conducted in healthy adults (aged 20-64 years). All participants received 2 intramuscular injections at various combinations of the antigen and the adjuvant (S-910823/agatolimod sodium, in µg: 12.5/250, 25/250, 50/250, 25/500, 50/500, 100/500, 10/500, 100/100, 200/1000) or placebo (saline) in an equivalent volume at a 3-week interval and were followed up until Day 50 in this interim analysis. RESULTS: In the preclinical studies, S-268019-a was safe and elicited robust immunoglobulin G (IgG) and neutralizing antibody responses in mice. When challenged with SARS-CoV-2, all S-268019-a-treated mice survived and maintained weight until 10 days, whereas all placebo- or adjuvant-treated (without antigen) mice died within 6 days. In the Phase 1/2 trial, although S-268019-a was well tolerated in adult participants, was safe up to Day 50, and elicited robust anti-spike protein IgG antibodies, it did not elicit sufficient neutralizing antibody levels. CONCLUSIONS: The S-268019-a vaccine was not sufficiently immunogenic in Japanese adults despite robust immunogenicity and efficacy in mice. Our results exemplify the innate challenges in translating preclinical data in animals to clinical trials, and highlight the need for continued research to overcome such barriers. (jRCT2051200092).


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunogenicidade da Vacina , Animais , Humanos , Camundongos , Adjuvantes Imunológicos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Método Duplo-Cego , População do Leste Asiático , Imunoglobulina G , SARS-CoV-2 , Sódio , Vacinas Sintéticas/imunologia
11.
Sci Rep ; 12(1): 20861, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460696

RESUMO

Vaccines that efficiently target severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent for coronavirus disease (COVID-19), are the best means for controlling viral spread. This study evaluated the efficacy of the COVID-19 vaccine S-268019-b, which comprises the recombinant full-length SARS-CoV-2 spike protein S-910823 (antigen) and A-910823 (adjuvant). In addition to eliciting both Th1-type and Th2-type cellular immune responses, two doses of S-910823 plus A-910823 induced anti-spike protein IgG antibodies and neutralizing antibodies against SARS-CoV-2. In a SARS-CoV-2 challenge test, S-910823 plus A-910823 mitigated SARS-CoV-2 infection-induced weight loss and death and inhibited viral replication in mouse lungs. S-910823 plus A-910823 promoted cytokine and chemokine at the injection site and immune cell accumulation in the draining lymph nodes. This led to the formation of germinal centers and the induction of memory B cells, antibody-secreting cells, and memory T cells. These findings provide fundamental property of S-268019-b, especially importance of A-910823 to elicit humoral and cellular immune responses.


Assuntos
COVID-19 , Vacinas , Camundongos , Animais , Humanos , Glicoproteína da Espícula de Coronavírus/genética , SARS-CoV-2 , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Imunidade
12.
J Glob Antimicrob Resist ; 31: 263-269, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36270447

RESUMO

OBJECTIVES: Macrolide-resistant Bordetella pertussis (MRBP) has been emerging and prevailing in mainland China since 2011. In this study, we aimed to investigate the genotype and macrolide resistance of circulating B. pertussis in East and Southeast Asia using genetic analyses. METHODS: A total of 302 DNA extracts from clinical specimens and isolates from 2010 to 2020 were analyzed: 145 from Vietnam, 76 from Cambodia, 48 from Taiwan, and 33 from Japan. Genotypes were determined by multilocus variable-number tandem-repeat analysis (MLVA). Macrolide-resistant A2047G mutation in B. pertussis 23S rRNA was investigated using the duplex Cycleave real-time polymerase chain reaction (PCR) assay. Whole-genome sequencing was performed on two MRBP isolates that were identified for the first time in Taiwan. RESULTS: Overall, 286 DNA extracts (95%) generated a complete MLVA genotype and 283 DNA extracts (94%) yielded a complete result for the A2047G mutation analysis. The A2047G mutation was detected in 18 DNA extracts: fourteen from Vietnam, one from Cambodia, two from Taiwan, and one from Japan. Most of them (78%) showed the genotypes MT104 and MT195, which have previously been reported in Chinese MRBP isolates. Further, the Taiwanese MRBP isolates were classified into the MT104 clade of Chinese MRBP isolates. CONCLUSION: After MRBP emerged and spread in mainland China, it may have spread to East and Southeast Asia in the 2010s. Continued surveillance targeting the A2047G mutation of MRBP is needed to prevent further spread of this emerging pathogen.


Assuntos
Bordetella pertussis , Coqueluche , Humanos , Bordetella pertussis/genética , Macrolídeos/farmacologia , Coqueluche/epidemiologia , Antibacterianos/farmacologia , Genótipo , Farmacorresistência Bacteriana , Mutação , Sudeste Asiático , Ásia Oriental
13.
Vaccine ; 40(41): 5892-5903, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36064667

RESUMO

To control the coronavirus disease 2019 (COVID-19) pandemic, there is a need to develop vaccines to prevent infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. One candidate is a nasal vaccine capable of inducing secretory IgA antibodies in the mucosa of the upper respiratory tract, the initial site of infection. However, regarding the development of COVID-19 vaccines, there is concern about the potential risk of inducing lung eosinophilic immunopathology as a vaccine-associated enhanced respiratory disease as a result of the T helper 2 (Th2)-dominant adaptive immune response. In this study, we investigated the protective effect against virus infection induced by intranasal vaccination of recombinant trimeric spike protein derived from SARS-CoV-2 adjuvanted with CpG oligonucleotides, ODN2006, in mouse model. The intranasal vaccine combined with ODN2006 successfully induced not only systemic spike-specific IgG antibodies, but also secretory IgA antibodies in the nasal mucosa. Secretory IgA antibodies showed high protective ability against SARS-CoV-2 variants (Alpha, Beta and Gamma variants) compared to IgG antibodies in the serum. The nasal vaccine of this formulation induced a high number of IFN-γ-secreting cells in the draining cervical lymph nodes and a lower spike-specific IgG1/IgG2a ratio compared to that of subcutaneous vaccination with alum as a typical Th2 adjuvant. These features are consistent with the induction of the Th1 adaptive immune response. In addition, mice intranasally vaccinated with ODN2006 showed less lung eosinophilic immunopathology after viral challenge than mice subcutaneously vaccinated with alum adjuvant. Our findings indicate that intranasal vaccine adjuvanted with ODN2006 could be a candidate that can prevent the infection of antigenically different variant viruses, reducing the risk of vaccine-associated enhanced respiratory disease.


Assuntos
COVID-19 , SARS-CoV-2 , Adjuvantes Imunológicos , Administração Intranasal , Compostos de Alúmen , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunoglobulina A Secretora , Imunoglobulina G , Pulmão , Camundongos , Oligonucleotídeos , Glicoproteína da Espícula de Coronavírus , Vacinação
14.
Pathol Int ; 72(10): 506-518, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36066006

RESUMO

Pandemic influenza virus A(H1N1)pdm09 infection occurred in healthy children and young adults, but asthmatic patients presented more rapid progression of respiratory distress and plastic bronchitis. To investigate the pathogenesis of worsening respiratory symptoms after A(H1N1)pdm09 infection, we focused on matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinases-1 (TIMP-1). MMP-9 and TIMP-1 levels in bronchoalveolar lavage fluid and serum from mice with and without asthma were evaluated after A(H1N1)pdm09 or seasonal A(H1N1) infection. MMP-9 levels were more elevated in Asthma/A(H1N1)pdm09-infected mice than in non-Asthma/A(H1N1)pdm09-infected mice on both 3 and 7 days post-infection. Immunohistochemical findings in this pneumonia model showed that MMP-9 and TIMP-1 positive cells were observed in blood vessels and bronchus of lung tissue in severe pathological findings of pneumonia with asthma. Microscopically, shedding cells and secretions were conspicuous in the trachea on days 3 and 7 post-infection, in the A(H1N1)pdm09-infected mice with asthma. Our results suggest that MMP-9 and TIMP-1 expressions are related to severe pneumonia in the A(H1N1)pdm09 infection with asthma, leading to cause epithelial cell shedding.


Assuntos
Asma , Metaloproteinase 9 da Matriz , Infecções por Orthomyxoviridae , Pneumonia Viral , Inibidor Tecidual de Metaloproteinase-1 , Animais , Asma/metabolismo , Modelos Animais de Doenças , Vírus da Influenza A Subtipo H1N1 , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Infecções por Orthomyxoviridae/metabolismo , Plásticos , Pneumonia Viral/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo
15.
Emerg Infect Dis ; 28(5): 998-1001, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35290176

RESUMO

To determine virus shedding duration, we examined clinical samples collected from the upper respiratory tracts of persons infected with severe acute respiratory syndrome coronavirus 2 Omicron variant in Japan during November 29-December 18, 2021. Vaccinees with mild or asymptomatic infection shed infectious virus 6-9 days after onset or diagnosis, even after symptom resolution.


Assuntos
COVID-19 , Doenças Transmissíveis , Infecções Assintomáticas , Humanos , SARS-CoV-2 , Eliminação de Partículas Virais
16.
Med ; 3(4): 249-261.e4, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35261995

RESUMO

Background: The immune profile against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has dramatically diversified due to a complex combination of exposure to vaccines and infection by various lineages/variants, likely generating a heterogeneity in protective immunity in a given population. To further complicate this, the Omicron variant, with numerous spike mutations, has emerged. These circumstances have created the need to assess the potential of immune evasion by Omicron in individuals with various immune histories. Methods: The neutralization susceptibility of the variants, including Omicron and their ancestors, was comparably assessed using a panel of plasma/serum derived from individuals with divergent immune histories. Blood samples were collected from either mRNA vaccinees or from those who suffered from breakthrough infections of Alpha/Delta with multiple time intervals following vaccination. Findings: Omicron was highly resistant to neutralization in fully vaccinated individuals without a history of breakthrough infections. In contrast, robust cross-neutralization against Omicron was induced in vaccinees that experienced breakthrough infections. The time interval between vaccination and infection, rather than the variant types of infection, was significantly correlated with the magnitude and potency of Omicron-neutralizing antibodies. Conclusions: Immune histories with breakthrough infections can overcome the resistance to infection by Omicron, with the vaccination-infection interval being the key determinant of the magnitude and breadth of neutralization. The diverse exposure history in each individual warrants a tailored and cautious approach to understanding population immunity against Omicron and future variants. Funding: This study was supported by grants from the Japan Agency for Medical Research and Development (AMED).


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Vacina BNT162 , Vacinas contra COVID-19 , Humanos , Complicações Pós-Operatórias , Vacinação
17.
Sci Adv ; 8(1): eabh3827, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34995117

RESUMO

One safety concern during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine development has been the vaccine-associated enhanced disease, which is characterized by eosinophilic immunopathology and T helper cell type 2 (TH2)­biased immune responses with insufficient neutralizing antibodies. In this study, we established a lethal animal model using BALB/c mice and a mouse-passaged isolate (QHmusX) from a European lineage of SARS-CoV-2. The QHmusX strain induced acute respiratory illness, associated with diffuse alveolar damage and pulmonary edema, in TH2-prone adult BALB/c mice, but not in young mice or TH1-prone C57BL/6 mice. We also showed that immunization of adult BALB/c mice with recombinant spike protein without appropriate adjuvant caused eosinophilic immunopathology with TH2-shifted immune response and insufficient neutralizing antibodies after QHmusX infection. This lethal mouse model is useful for evaluating vaccine-associated enhanced respiratory disease during SARS-CoV-2 infection and may provide new insights into the disease pathogenesis of SARS-CoV-2.

18.
Pediatr Infect Dis J ; 41(5): 388-393, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35093999

RESUMO

BACKGROUND: Polymerase chain reaction (PCR) is highly sensitive and is thus the standard method for diagnosing pertussis. Real-time PCR is widely used because of its accuracy and the simplicity of the simultaneous cycle threshold (Ct) value, which represents the copy numbers of the target gene. Little is known of the association of Ct value with pertussis severity in neonates and infants. METHODS: This study determined Ct values in neonates and infants diagnosed with pertussis by real-time PCR using nasopharyngeal samples at Vietnam National Children's Hospital in Hanoi in 2017 and 2019. The association of disease severity and clinical parameters were analyzed using univariate and multivariate analyses. RESULTS: We evaluated 108 patients with pertussis [median age: 63 days, interquartile range (IQR): 41-92 days]. Only 6/108 (6%) received at least 1 dose of a pertussis-containing vaccine. Among them, 24 (22.2%) had severe disease requiring care in a pediatric intensive care unit, 16 (13.8%) required mechanical ventilation, and 3 (2.6%) died. The median Ct value was lower in patients with severe disease (19.0, IQR: 16.5-22.0, n = 24) than in those without severe disease (25.5, IQR: 20.0-30.0, n = 84) (P = 0.002). Logistic regression analyses demonstrated that PCR Ct value [odds ratio (OR): 1.783, 95% confidence interval (CI): 1.013-3.138, P = 0.045], age (OR: 3.118, 95% CI: 1.643-5.920, P = 0.001), and white blood cell counts (OR: 0.446, 95% CI: 0.261-0.763, P = 0.003) remained significantly associated with severe disease. CONCLUSIONS: Real-time PCR Ct values for pertussis might be useful as a predictor of severe disease in neonates and infants.


Assuntos
Bordetella pertussis , Coqueluche , Bordetella pertussis/genética , Criança , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Nasofaringe , Vacina contra Coqueluche , Reação em Cadeia da Polimerase em Tempo Real , Coqueluche/complicações , Coqueluche/diagnóstico
19.
J Infect Dis ; 225(2): 269-281, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34223910

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging, life-threatening tick-borne viral hemorrhagic fever caused by SFTS virus (SFTSV). Transient appearance of plasmablastic lymphocytes in the peripheral blood of SFTS cases has been reported; however, the pathological significance of this transient burst in peripheral blood plasmablastic lymphocytes is unclear. Here, we show that SFTSV infection of human peripheral blood mononuclear cells in vitro induced propagation of atypical lymphocytes. These atypical lymphocytes were activated B cells, which were induced by secretory factors other than viral particles; these factors were secreted by SFTSV-infected B cells. Activated B cells shared morphological and immunophenotypic characteristics with B cells of plasmablast lineage observed in peripheral blood and autopsy tissues of SFTS cases. This suggests that SFTSV-infected B cells secrete factors that induce B-cell differentiation to plasmablasts, which may play an important role in pathogenesis of SFTS through the SFTSV-B cell axis.


Assuntos
Leucócitos Mononucleares , Phlebovirus/isolamento & purificação , Febre Grave com Síndrome de Trombocitopenia , Linfócitos B , Infecções por Bunyaviridae , Humanos
20.
Sci Rep ; 11(1): 20231, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642357

RESUMO

Increase of the enteric bacteriophages (phage), components of the enteric virome, has been associated with the development of inflammatory bowel diseases. However, little is known about how a given phage contributes to the regulation of intestinal inflammation. In this study, we isolated a new phage associated with Enterococcus gallinarum, named phiEG37k, the level of which was increased in C57BL/6 mice with colitis development. We found that, irrespective of the state of inflammation, over 95% of the E. gallinarum population in the mice contained phiEG37k prophage within their genome and the phiEG37k titers were proportional to that of E. gallinarum in the gut. To explore whether phiEG37k impacts intestinal homeostasis and/or inflammation, we generated mice colonized either with E. gallinarum with or without the prophage phiEG37k. We found that the mice colonized with the bacteria with phiEG37k produced more Mucin 2 (MUC2) that serves to protect the intestinal epithelium, as compared to those colonized with the phage-free bacteria. Consistently, the former mice were less sensitive to experimental colitis than the latter mice. These results suggest that the newly isolated phage has the potential to protect the host by strengthening mucosal integrity. Our study may have clinical implication in further understanding of how bacteriophages contribute to the gut homeostasis and pathogenesis.


Assuntos
Bacteriófagos/classificação , Colite/microbiologia , Enterococcus/patogenicidade , Mucina-2/metabolismo , Animais , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Colite/imunologia , Modelos Animais de Doenças , Enterococcus/virologia , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...